Recognizing metal and acid radical ion-binding sites by integrating ab initio modeling with template-based transferals

نویسندگان

  • X. Hu
  • Q. Dong
  • J. Yang
  • Y. Zhang
چکیده

MOTIVATION More than half of proteins require binding of metal and acid radical ions for their structure and function. Identification of the ion-binding locations is important for understanding the biological functions of proteins. Due to the small size and high versatility of the metal and acid radical ions, however, computational prediction of their binding sites remains difficult. RESULTS We proposed a new ligand-specific approach devoted to the binding site prediction of 13 metal ions (Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, K+) and acid radical ion ligands (CO32-, NO2-, SO42-, PO43-) that are most frequently seen in protein databases. A sequence-based ab initio model is first trained on sequence profiles, where a modified AdaBoost algorithm is extended to balance binding and non-binding residue samples. A composite method IonCom is then developed to combine the ab initio model with multiple threading alignments for further improving the robustness of the binding site predictions. The pipeline was tested using 5-fold cross validations on a comprehensive set of 2,100 non-redundant proteins bound with 3,075 small ion ligands. Significant advantage was demonstrated compared with the state of the art ligand-binding methods including COACH and TargetS for high-accuracy ion-binding site identification. Detailed data analyses show that the major advantage of IonCom lies at the integration of complementary ab initio and template-based components. Ion-specific feature design and binding library selection also contribute to the improvement of small ion ligand binding predictions. AVAILABILITY AND IMPLEMENTATION http://zhanglab.ccmb.med.umich.edu/IonCom CONTACT: [email protected] or [email protected] information: Supplementary data are available at Bioinformatics online.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Op-cbio160397 3260..3269

Motivation: More than half of proteins require binding of metal and acid radical ions for their structure and function. Identification of the ion-binding locations is important for understanding the biological functions of proteins. Due to the small size and high versatility of the metal and acid radical ions, however, computational prediction of their binding sites remains difficult. Results: ...

متن کامل

Ab initio (first principle) material modeling study on Lio adsorbed by palladium-cobalt (PdCo) nanoparticles

PdCo subnanoalloys have been commonly used as a catalytic material in some important chemicalreactions, involving in fisher-tropsch reactions, and oxygen reduction reactions. In terms ofunderstanding the role of catalysis, these smallest bimetallic nanoparticles provide the simplestprototypes of Pd-Co bimetallic catalysts for different compositions. In this study, the effect o...

متن کامل

Energetics of Zn2+ adsorption in silicate MEL-type nanoporous material

Density-functional-based and ab initio calculations were implemented at different computational levels to estimate the binding energy of Zn2+ ion adsorbed on the available sites of a silicate MEL-type adsorbent. B3LYP and MP2 were used in combination with the 6-31G*, 6-31+G*, LanL2DZ, 6-311+G*, and Def2-TZVP basis sets. The zinc cation was found to preferentially occupy the 6MR sites followed b...

متن کامل

Theoretical Study of Flavopiridol Binded to Transition Metals

More recently medical chemistry research has been focused on proteins that drive and controlcell cycle progression. Among them, the cyclin dependent kinases (cdk’s) are a group ofserine/threonine kinases, which rule the transition between successive stages of the cell cycle. Theactivity of cdk’s is regulated by multiple mechanisms, including binding to cyclins, which is a broadclass of positive...

متن کامل

An Angular Overlap Model for Cu(II) Ion in the AMOEBA Polarizable Force Field.

An extensible polarizable force field for transition metal ion was developed based on AMOEBA and the angular overlap model (AOM) with consistent treatment of electrostatics for all atoms. Parameters were obtained by fitting molecular mechanics (MM) energies to various ab initio gas-phase calculations. The results of parameterization were presented for copper (II) ion ligated to water and model ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 32 23  شماره 

صفحات  -

تاریخ انتشار 2016